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SUMMARY 

An equation describing the peak broadening or peak contraction in liquid 
chromatography under solvent-programmed or gradient conditions is derived from 
the mass-transport equation in the dispersion model. The results are applicable to all 
cases where the retention can be calculated in advance. The predictions obtained with 
the equation are equal to those obtained by other means, when available. This is the 
case for step gradients with the assumption of negligible dispersion, and for the linear 
solvent gradients. 

INTRODUCIION 

Solvent programming in liquid chromatography is a powerful tool used to 
resolve some important problems arising in analytical applications. For example, 
continuous gradients have been employed’*2 as an answer to the “general elution 
problem”, and step gradients to circumvent poor detection sensitivity in on-column 
concentration procedures3-5. 

Migration, or retention, of solutes under solvent-programmed conditions is 
well described. Snyder and Saunders’ derived the fundamental equation and also 
gave a numerical treatment of the effect of the solvent program on the peak dispersion, 
i.e., the contraction effect due to the fact that the peak front moves in a so!vent of 
lesser strength than does the tail of the peak. More recent treatments of solvent- 
programmed elutionz~7-g, inspired by the increasing popularity of gradients in high- 
performance liquid chromatography (HPLC), do not differ in essence from the 
approach employed by Snyder in 1964, although the mathematical tools used are 
sometimes much more sophisticated. No new treatments of the peak broadening were 
given. On the other hand, Snyder et al.’ have recently given results of the use of the 
above numerical procedures for the specific case of the linear solvent strength (LSS) 
gradients they advocate strongly. 

In the present paper a description of band broadening in solvent programming 
is given which applies to all slow gradients, and the results also seem to be valid for 
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step gradients. Experimental verification of the equations as well as a discussion of 
the implications for optimization will be given in subsequent papers. 

THEORETICAL 

Mathematical description of the transport of a solute 

The differential equation used here to describe mass transport in the cohunn is 

act D a+, ac, -= - 
at air2 -5G (1) 

in which c, is the “total concentration”, defined as 

c,=c,fqc,=c,(l tK) 

c, is the concentration in the mobile phase, c, is the concentration in the stationary 
phase, q is the volume ratio of the stationary and mobile phases, K is the capacity 
factor, t is the time, z is the axial coordinate in the column, v is the migration velocity 
of the mobile phase and D is the dispersion coefficient, equal to Hv/2, where H is the 
plate height. immediate equilibrium between mobi!e and stationary phase is assumed 
described by 

c, = Kc, 

in which K is the partition or adsorption constant. 
It should be noted that the use of eqns. 1 and 2 introduces certain limitations 

on the applicability of the results obtained. The most important of these are as 
follows_ 

The use of a dispersion model for cbromatographic transporF”*“, as implied 
by eqn. 1 groups together all kinds of dispersion mechanisms (normal and eddy 
diffusion, resistance to mass transfer in the various phases) into one dispersion 
coefllcient, D. This is an adequate description of the physical reality, if the cohunn 
length is large enough so that all dispersion mechanisms finally affect the elution 
function in the same way: a gaussian function results, being an asymptotic solution 
of the various differential equations, provided the column length (expressed, e.g., as 
plate number) is large. Our results will therefore be valid only for reasonably large 
plate numbers (100-1000, depending on the required accuracyj. 

The capacity ratio, K, changes with time in gradient eIution. It is knownx2 that 
the plate height, ff, in LC is a function of K. We do not include this effect in our 
treatment because it would lead to unacceptabIe mathematical complexity. In situa- 
tions where resistance to mass transfer in the stationary phase plays a predominant 
role (e.g., in classical ion-exchange chromatography) the results would be questionable. 
However, in most HPLC situations the dependence of N on K is not so strong as to 
ruin the practical validity of our treatment_ 

Changes in K are accomplished by changes in eluent composition. A number 
of second-order effects are therefore to be expected: the velocity, v, and the dispersion 
coefiicient D can change because of changes in the viscosity and in the (related) values 
of the diffusion coefficients_ We neglect these effects. In order to avoid complications 
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in the formulae, we express the influence of solvent strength on the distribution by 
giving the capacity factor, K, rather than the distribution constant, K, as a function 
ofzandt: 

K = K&C) 

Description of the peak width is first carried out by using the second normalized 
centralized place moment 

I 
+ Q) x’Cl(X) dX 

pCt= -* +m 

I 
cd-9 dx 

--m 

(3) 

where x = z - p, the axial coordinate, relative to the centre of gravity, {Lo, of the c,(z) 
function : 

I 
i-a, 

x,(z) dz 

Ptl=-m +m 

I c*(z) clz 
-02 

(4) 

Again, some comment is required, in order to indicate the limitations of the 
treatment_ Characterization of local and temporal distribution functions by the use 
of moments has a number of advantages, among which the most important are the 
direct relation of the moments with physicochemical parameters in the column, and 
(connected with this) the mathematical simplification obtained. On the other hand it 
should be recognized that for odd, non-gaussian peak shapes, expression of the peak 
width as the second moment, ,u2, gives little information about overlap of adjacent 
peaks, which is of prime concern to an analytical chemist. Only for known peak 
shapes, e.g., block functions, first-order responses, gaussian shapes, can we infer 
from the first and second moments how severe will be the peak overlap. It follows 
that our treatment will give valuable results for the analytical chemist only for cases 
where the peak shape is known in advance: gaussians for columns with high plate 
numbers (>lOO) and small injection profiles, or, e.g., block functions when these are 
expected because of the injection conditions. Fortunately these extremes are exact!y 
the cases where solvent programs are important. 

A second comment concerns the use of c, rather than c, in eqns. 3 and 4. It 
could be argued that in elution chromatography c,(t) at the column end is a more 
relevant function than c,(z) at a particular moment_ The choice of c,(z) in our treat- 
ment is based purely on mathematical reasons. It can be shown that for slowly 
varying capacity factors (in the case of slow gradients, or in a region of constant K 

after a steeper gradient), the second moments based on c, and c, are the same. The 
use of local distributions, prior to the temporal distribution, is widespread in treat- 
ments of chromatographic transport. The translation of the results into elution peak 
widths in time units is straightforward and valid for al1 columns with large plate 
numbers. 
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The dinominator of eqns. 3 and 4 is constant and equal to Q/A,, where Q is 
the tota amount of the solute and A, is the area of the part of the cross section of the 
cohnnn which is occupied by the mobile phase. Therefore: 

and 

A 

I 
4-m 

P’=$_, zc&) dz 

(5) 

(6) 

As we need expressions for the retention parameters for manipulating and inter- 
preting the dispersion formulae, we will repeat known6-g derivations of these in our 
terms. Thus ,differentiating eqn. 6, and interchanging integration and differentiating, 
one obtains : 

dp, Am I 
+m ac -- 

dt- Q _-a, 

z+dz 

Substituting from eqn. 1 leads to: 

dp, 4-n _- 
dt- Q I ( + m zD a2cm -- zyac” dz 

__rD az2 az 1 

(7) 

Partial integration of eqn. 8 using the physically obvious fact that for z --f & co, 
c, + 0, leads to 

which indicates that only c, contributes to migration: c, is related to c, via the 
varying value of K + 1 in the column: 

1 
c, = c, -- 

K+l 

Thus : 

‘dp, A, -- 
dt- Q _-m I 

+w v c, dz 
K+l (10) 

Assuming that the gradient is flat, i.e., K changes little within the z region of 
significant values of cZ, we can treat the K value as a constant, R, the value it has for 
the centre of the peak z = pl; 

d,u, 4-n v s -+-co 
V 

--- 

d? QK+l_, 
c, dz = 

GJ%.t) + 1 (11) 

Eqn. 11 shows the dependence of R on t and pl. Now, this equation is more 
easily integrated by repiacing the t coordinate by t - &v = & For gradients which 
do not change their shape on migration through the cohmn, i.e., those which are not 
distorted by dispersion or by selective uptake of one of the solvent components by the 
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stationary phase (solvent demixing), the capacity factor within the peak’s centre of 
gravity, 2, is simply 

where 6 is proportional to the volume of solvent passed through the peak centre6, but 
expressed as a time coordinate. It can be shown that a linear dependence of K on z 
does not impair the validity of this approximation. Expression of eqn. 11 in these 
new coordinates yields : 

dpl Y 
-=- 

dE K(E) (13) 

This equation, in different forms, has been put forward by Snyder and Saunder?, 
and used by Jandera and ChurZek’, Schoenmakers et ai.’ and Liteanu and Gocan’. 
The 6, for elution (U~ = L) is found by 

Returning to the second moment, we obtain’, when differentiating eqn. 5 

and substitution of eqn. 1 in eqn. 15 yields: 

dp2 A fro x2D a%, ac _- 
dt- Q 

__ V_K2 --!z dx 
_-co I ( ax2 ax ) 

(14) 

(1% 

(16) 

By repeated partial integration of eqn. 16 and using again that for s + & 00, c, = 0, 
it can be shown that: 

(17) 

Now we assume again that the gradient is flat within the range of _x (the total peak 
width) in which c, is significantly different from zero. Continuous gradients generally 
justify this assumption, step gradients obviously do not. However, the curious fact 
arises that the results obtained with this treatment, mathematically justified only for 
sIowIy varying capacity factors, exactly reproduce certain resuhs obtained for 
transport functions for dispersionless situations and step gradients3p”. it therefore 
seems appropriate to hope for more general validity of the treatment, beyond the 
range of slow variation of K with t and z for which the present calculation can be 
justified mathematically. 

l In eqn. 5, c is not the only variable which changes; x, taken relative to the peaks centre of 
gravity, also changes. It can be shown, however, that the resuIt of a derivation which takes this into 

account is the same as eqn. 16. 
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Assuming such a slow variation of K with x, and again denoting the K at x = 0 

(the peak centre of gravity) by L (of course a time-dependent value), we can express 
K as a function of x by first-order approximation: 

K(X) = a(1 i ax) (W 

This leads to: 

c,(x) = cM 
1 

1+ K(l tax) 

With the same assumption of slow variation of K, this can be set equal to: 

(19) 

(20) 

Insertion of this into eqn. 17 yields four terms, two of which vanish because x measures 
the distance relative to the centre of gravity, i.e.: 

I 

i-a2 
_TC,(X) dx = 0 

--(D 

The two remaining terms yield: 

+z 4-n E 2D _ 1 +U2 

-=- 
dt 0 Kfl -a 

c,(x) dx - 2v _ 
aK 

(K t 1)” 
f+ OD x%,(x) dx] 

-00 

-2LK - 
(K + 1)’ ap2 A”, 1 

(21) 

Eqn. 21 describes the change in peak width with time. For comparison it should be 
noted that in the isocratic situation (a = 0) the second term on the right-hand side 
vanishes_ 

For a number of cases it is easier to look at the change in peak width with the 
migrated distance, pI. By using eqn. 11 

it follows that: 

4+ 20 
i(g=v- 

2 - 

&p2=H-22 
I?+1 ap2 (22) 

This equation gives very good insight, as it gives the increase of the second moment 
with the migrated distance as a sum of the normal dispersion effect (H term) and the 
band compression effect (last term), proportional to ,+ and LZ. However, for a general 
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solution of eqn. 11 it is convenient to replace the dependent variable ,D~ by 
/L&I +- K)/K]’ = y. This gives: 

dy -= 
4% 

(1 + i))’ H _ 2(K + 1) dr2 
2 I? 

(23) 

The value of dfc/d[LI can be derived, again for gradients which do not change their 
shape on migration through the coItmn, i.e., which are not distorted by dispersion or 
by selective uptake of one of the solvent components by the stationary phase (solvent 
demixing). For these cases R = K(z,t) = ~(6) and 

dZ dh- dc$ K(E) -=--_= 
dpl d5 dp, 

k- a (- v) y = - ;za (24) 

from eqns. 13 and 18. For those gradients, which are the only ones for which 
analytica mathematical considerations give insight into transport properties, eqn. I2 
becomes simply : 

(25) 

As an example, we treat first the LSS gradient. Here 

K(E) = K. e-be (26) 

describes the dependence of the capacity factor on time. The result for the net reten- 
tion time is’ 

E, = (l/b) In (h-&o + 1) (27) 

and the capacity factor on elution, K_ is: 

K K 
Kc = 

0 0 

KObtO f 1 = fc,bL/v + 1 (28) 

This expression can be used to find K as a function of the peak position, pI, in the 
column. Then the right-hand side of eqn. 25 is known and this equation can be 
integrated. The result is: 

Y = HL(L f p + $p2) (29) 

where 

P= _!k- bt, 
Ko + 1 
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The second place moment is 

P2 = HL [ 
1 -l-p-l-+p 

(1 + &92 ‘1 

in which the bracketed factor in the right-hand side is equal to G2 as defined by Snyder 
et al_=. A plot of G ver.su.s the slope of the gradient for large K,, according to this 
equation is to be found in ref. 2, and these numerical results are equal to those pre- 
dicted by eqn. 29. 

A second example is the step gradient. The solution of eqn. 24 for a finite H 
value depends of course on the dependence of K on yl, i.e., on the moment where the 
peak is overtaken by the step, and a complex expression will result. However, if we 
take H = 0 (ideal, dispersionless chromatography), we shouId find the same result 
as that obtained with more elementary reasoning. This is indeed the case. Eqn. 24 
predicts that for H = 0, y is invariant. Thus the peak widths before (b) and after (a) 
the passage of the step have a ratio: 

(31) 

This is exactly what has been derived Is3 The ratio of the concentrations in the mobile _ 
phase after and before the passage of the step is: 

c 
m3 Kb =- 
C mb K, 

(32) 

However, with eqn. 25 it is possible to calculate how dispersion affects the validity 
of eqn. 32, especially when the absolute values of K are small. 

CONCLUSIONS 

A general differential equation of relatively simple form can be derived which 
predicts the peak broadening, or contraction, under solvent-programmed conditions. 
The predictions coincide with numerical results obtained for LSS gradients, and with 
derivations for step gradients when dispersion is neglected_ A discussion of the effect 
of the contraction on optimal gradient shape, as well on the choice of optimal conai- 
tions for on-column concentration procedures, is now possible. Future papers will 
be devoted to these subjects. 
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